COMPLEX HEAT EXCHANGE IN THE CASE OF THE
LAMINAR FLOW OF A SCATTERING.MEDIUM IN A
CYLINDRICAL CHANNEL
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Complex heat exchange in the case of the lamihar motion of a nonscattering medium in a cylindrical
channel has been discussed in [1, 2]. In [2] the channel is taken to be infinite, and the temperature of the lateral
surface at x =0 varies discontinuously. In [1] heat exchange is investigated in a channel of finite length., Let
us adopt the assumptions of [1], but we will assume the medium to be absorbing and scattering.

Let us assume that at x=0 (Fig. 1) 2 medium with temperature T, and a parabolic velocity distribution

flows into a cylindrical channel whose walls are at the constant temperature Ty. At x=L the channel is closed
by a black permeable membrane at temperature Ty,. The energy equation is of the form
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where Pe=p cp(v) D/A is the Péclet number; (v) is the average velocity; V=v/ (v);£=x/D; n = 21/D; 0=T/T,;
D is the channel diameter; p is the density of the medium; Cp is its specific heat; v is the local veloeity; T is
the temperature; r and x are the radial and longitudinal coordinates; A is the thermal conductivity coefficient;
and qp is the radiation flux density vector. The boundary conditions for Eq. (1) have the form

B:=0)=1,08(n=1, £>0) =@, 90— = 0.

The divergence of the radiative flux was calculated with the radial and longitudinal temperature distribu-
tion in the channel taken into account. Scattering is taken into account in the quasi-one-dimensional approxi-
mation suggested in [3]. It is assumed in this approximation that scattering occurs only forward and backward

"along the ray path, but the geometry of the medium is taken completely into account. The solution for the
Green's function of the one-dimensional radiative transfer problem was obtained in advance and has the form
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for the point 7> T, (Fig. 2).

The self-radiation of the point 7, is unitary and isotropic. If 7 lies in (0, T;), then the solution for the
Greens function is obtained from (2) by a 180° rotation of the T axis
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where Ty, T, and T; are the products of the absorption coefficient by the appropriate length, n= VA= -— wy)s
Ro=(V1=py —vV1I—19)/(VI— wy+V1—7); vy is the ratio of the scattering coefficient to the absorption coefficient k,
and p. is the average cosine of the scattering angle affiliated with an elementary scattering event. The co-
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efficients k, v, b can be calculated from the Mie theory [4]. The quantities I; and I, are the intensities of the
resulting radiation at the point 7. The expressions
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are obtained for them, where
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The quasi-one-dimensional approximation was used in [5, 6]. The problem of radiative—conductive heat
exchange in a plane layer is solved in {5], and good agreement of the results with the exact numerical solution
is shown. This approximation is more accurate the more the scattering indicatrix is elongated along the ray.
When scattering is not taken into account it leads to the exact solution, and the results in the case of a purely
scattering medium [5, 6] are in good agreement with the results of the exact calculations of the spherical
albedo of a layer in the case of a spherical scattering indicatrix [7].

With the use of the Green function (2) and (3) the diveigence of the radiative flux vector is determined in
dimensionless form by the expression
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where Bu=KkD; Bo"1=a'T8/cpp(v); o is the Stefan—Boltzmann constant; B is the effective radiation density of

the wall relative to o T§; S is the ratio of the distance between the emitting point and the point at which div g,

is determined to the diameter of the cylinder; and S; is the anpalogous ratio for the case of the bounding emittin

points.

The energy Eq. (1) is solved numerically by the finite~difference method with the use of the sweep metho
in combination with an iterative process. The quantity div ¢y was determined from the derived field H, and
then Eq. (1) was solved and a new temperature field was found. The process converged after approximately
six iterations.. The case of the cooling of a medium upon its flow along a channel is considered (Tw< Tg). The
calculation was performed on a BESM-6 computer with the following parameters: @w=Tw/T;=0.18, Pe=1000,
v =0.5, ¢ =0.7, Bo=29.4, L/D=18, and for different values of the optical thickness of the medium Bu. The
walls were assumed to be black. Comparison of the results of the calculation in scattering and nonscattering
media was carried out for identical values of the absorption coefficient of the medium. When scattering is
taken into account, the temperature of the medium decreases more slowly along the channel than when scatter-
ing is not taken into account. This result pertains to both the axial local temperature and the average temper-
ature over the cross section.
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The temperature distribution on the cylinder axis without and with scattering taken into account is given
in Fig. 3 (curves 1 and 2, respectively) for kD(1 — y) =4. Inthe initial section of the channel the temperature
" gradient at the wall is lower in a scattering medium than for a nonscattering one, and then the temperature
gradient becomes larger in the scattering medium than in the nonscattering one as the medium moves along the
channel. The conductive component of heat exchange varies in a corresponding manner. The local resultant
flux of radiation onto the wall is also less in the scattering medium in the initial section, and it can be larger
in the final section than for a medium without scattering.

The variation along the channel length of the density of the resultant radiation onto the wall is shown in
Fig. 4 both for a scattering and a nonscattering medium (curves 1 and 2, respectively). The comparison is
made with a value for the product of the absorption coefficient by the diameter of (1 — y)Bu=4, A smaller amount
of heat is transmitted to the wall of the channel in a scattering medium, and the temperature of the medium at
the exit has a higher value than in the analogous case without scattering taken into account.

It is interesting to trace the effect of scattering on the total heat exchange in the channel. The dependence
of the total heat flux Qy and the radiative flux Qr transmitted to the side wall of the entire channel on the prod-
uct (L — y)Buis shown in Fig. 5 (curves 1 are with scattering taken into account, and curves 2 are without
scattering taken into account; F =7 D?4). The results show that the effect of scattering is insignificant at small
and moderate optical thicknesses of the medium, but it increases as the optical thickness increases. It follows
from Fig. 5 that there exists in a scattering medium a maximum heat transmission at some optical thickness
of the medium, and for the radiative component the position of the maximum is shifted into the region of lower
values of the optical thickness. It is shown in [1] that the quantity Qg can have a maximum without scattering
taken into consideration. The presence of the maximum is explained by the fact that as the absorption co-
efficient increases the optical thickness of the relatively cold boundary layer, which screens the radiation
arriving at the wall from the hot inner layers, increases. The screening role of the boundary layer increases
in a scattering medium,
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